References#
- ABS+19
Reza Abiri, Soheil Borhani, Eric W Sellers, Yang Jiang, and Xiaopeng Zhao. A comprehensive review of eeg-based brain–computer interface paradigms. Journal of neural engineering, 16(1):011001, 2019.
- ACZG08
Kai Keng Ang, Zheng Yang Chin, Haihong Zhang, and Cuntai Guan. Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface. In IEEE International Joint Conference on Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence), 2390–2397. June 2008. URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4634130, doi:10.1109/IJCNN.2008.4634130.
- ASTS16
A. Antoniades, L. Spyrou, C. C. Took, and S. Sanei. Deep learning for epileptic intracranial EEG data. In 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), 1–6. September 2016. doi:10.1109/MLSP.2016.7738824.
- AMRKothe20
Lynton Ardizzone, Radek Mackowiak, Carsten Rother, and Ullrich Köthe. Training normalizing flows with the information bottleneck for competitive generative classification. In Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. 2020. URL: https://proceedings.neurips.cc/paper/2020/hash/593906af0d138e69f49d251d3e7cbed0-Abstract.html.
- BDM+08
Tonio Ball, Evariste Demandt, Isabella Mutschler, Eva Neitzel, Carsten Mehring, Klaus Vogt, Ad Aertsen, and Andreas Schulze-Bonhage. Movement related activity in the high gamma range of the human EEG. NeuroImage, 41(2):302–310, June 2008. URL: http://www.sciencedirect.com/science/article/pii/S1053811908001717 (visited on 2015-07-15), doi:10.1016/j.neuroimage.2008.02.032.
- BRYC16
Pouya Bashivan, Irina Rish, Mohammed Yeasin, and Noel Codella. Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks. In arXiv:1511.06448 [cs]. 2016. arXiv: 1511.06448. URL: http://arxiv.org/abs/1511.06448 (visited on 2016-12-20).
- BSBB18
Joos Behncke, Robin T Schirrmeister, Wolfram Burgard, and Tonio Ball. The signature of robot action success in eeg signals of a human observer: decoding and visualization using deep convolutional neural networks. In 2018 6th international conference on brain-computer interface (BCI), 1–6. IEEE, 2018.
- BSV+18
Joos Behncke, Robin Tibor Schirrmeister, Martin Volker, Jiri Hammer, Petr Marusic, Andreas Schulze-Bonhage, Wolfram Burgard, and Tonio Ball. Cross-paradigm pretraining of convolutional networks improves intracranial eeg decoding. In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 1046–1053. IEEE, 2018.
- BPC20
Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: the long-document transformer. CoRR, 2020. URL: https://arxiv.org/abs/2004.05150, arXiv:2004.05150.
- BXWS19
Siddharth Biswal, Cao Xiao, M. Brandon Westover, and Jimeng Sun. Eegtotext: learning to write medical reports from eeg recordings. In Finale Doshi-Velez, Jim Fackler, Ken Jung, David Kale, Rajesh Ranganath, Byron Wallace, and Jenna Wiens, editors, Proceedings of the 4th Machine Learning for Healthcare Conference, volume 106 of Proceedings of Machine Learning Research, 513–531. PMLR, 09–10 Aug 2019. URL: https://proceedings.mlr.press/v106/biswal19a.html.
- BTL+08
B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Muller. Optimizing Spatial filters for Robust EEG Single-Trial Analysis. IEEE Signal Processing Magazine, 25(1):41–56, 2008. URL: http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4408441, doi:10.1109/MSP.2008.4408441.
- BLMP+08
C. Brunner, R. Leeb, G. Müller-Putz, A. Schlögl, and G. Pfurtscheller. BCI Competition 2008–Graz data set A. Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology, pages 136–142, 2008. URL: http://www.bbci.de/competition/iv/desc_2a.pdf (visited on 2017-01-09).
- BFK+17
Felix Burget, Lukas Dominique Josef Fiederer, Daniel Kuhner, Martin Völker, Johannes Aldinger, Robin Tibor Schirrmeister, Chau Do, Joschka Boedecker, Bernhard Nebel, Tonio Ball, and others. Acting thoughts: towards a mobile robotic service assistant for users with limited communication skills. In 2017 European Conference on Mobile Robots (ECMR), 1–6. IEEE, 2017.
- CG11
Hubert Cecotti and Axel Graser. Convolutional Neural Networks for P300 Detection with Application to Brain-Computer Interfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(3):433–445, March 2011. URL: http://dx.doi.org/10.1109/TPAMI.2010.125 (visited on 2016-12-20), doi:10.1109/TPAMI.2010.125.
- CCM+22
Isha R Chavva, Anna L Crawford, Mercy H Mazurek, Matthew M Yuen, Anjali M Prabhat, Sam Payabvash, Gordon Sze, Guido J Falcone, Charles C Matouk, Adam de Havenon, and others. Deep learning applications for acute stroke management. Annals of Neurology, 92(4):574–587, 2022.
- CAW+09
Zheng Yang Chin, Kai Keng Ang, Chuanchu Wang, Cuntai Guan, and Haihong Zhang. Multi-class filter bank common spatial pattern for four-class motor imagery BCI. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009. EMBC 2009, 571–574. September 2009. URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5332383, doi:10.1109/IEMBS.2009.5332383.
- CUH16
Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). In ArXiv e-prints, volume 1511, arXiv:1511.07289. 2016. URL: http://adsabs.harvard.edu/abs/2015arXiv151107289C (visited on 2016-12-21).
- CMGL98
N. E. Crone, D. L. Miglioretti, B. Gordon, and R. P. Lesser. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain, 121(12):2301–2315, December 1998. URL: https://academic.oup.com/brain/article/121/12/2301/371496/Functional-mapping-of-human-sensorimotor-cortex (visited on 2017-01-17), doi:10.1093/brain/121.12.2301.
- DFE+22
Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: fast and memory-efficient exact attention with io-awareness. In NeurIPS. 2022. URL: http://papers.nips.cc/paper\_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html.
- DSO+10
F. Darvas, R. Scherer, J. G. Ojemann, R. P. Rao, K. J. Miller, and L. B. Sorensen. High gamma mapping using EEG. NeuroImage, 49(1):930–938, January 2010. URL: http://www.sciencedirect.com/science/article/pii/S1053811909009513 (visited on 2017-01-10), doi:10.1016/j.neuroimage.2009.08.041.
- dS22
missing journal in de2022learning
- DKB15
Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: non-linear independent components estimation. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings. 2015. URL: http://arxiv.org/abs/1410.8516.
- DSohlDicksteinB16
Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. CoRR, 2016. URL: http://arxiv.org/abs/1605.08803, arXiv:1605.08803.
- FEN+23
Daniel Y. Fu, Elliot L. Epstein, Eric Nguyen, Armin W. Thomas, Michael Zhang, Tri Dao, Atri Rudra, and Christopher Ré. Simple hardware-efficient long convolutions for sequence modeling. CoRR, 2023. URL: https://doi.org/10.48550/arXiv.2302.06646, arXiv:2302.06646, doi:10.48550/arXiv.2302.06646.
- GSChrabkaszcz+20
Lukas AW Gemein, Robin T Schirrmeister, Patryk Chrabąszcz, Daniel Wilson, Joschka Boedecker, Andreas Schulze-Bonhage, Frank Hutter, and Tonio Ball. Machine-learning-based diagnostics of eeg pathology. NeuroImage, 220:117021, 2020.
- GCM+13
A. Giusti, D. C. Cireşan, J. Masci, L. M. Gambardella, and J. Schmidhuber. Fast image scanning with deep max-pooling convolutional neural networks. In 2013 IEEE International Conference on Image Processing, 4034–4038. September 2013. doi:10.1109/ICIP.2013.6738831.
- GAU+22
Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, and Yinfei Yang. Longt5: efficient text-to-text transformer for long sequences. In Findings of the Association for Computational Linguistics: NAACL 2022. 2022.
- HMJ+16
Mehdi Hajinoroozi, Zijing Mao, Tzyy-Ping Jung, Chin-Teng Lin, and Yufei Huang. EEG-based prediction of driver's cognitive performance by deep convolutional neural network. Signal Processing: Image Communication, 47:549–555, September 2016. URL: http://www.sciencedirect.com/science/article/pii/S0923596516300832 (visited on 2016-12-20), doi:10.1016/j.image.2016.05.018.
- HPF+16
Jiřà Hammer, Tobias Pistohl, Jörg Fischer, Pavel Kršek, Martin Tomášek, Petr Marusič, Andreas Schulze-Bonhage, Ad Aertsen, and Tonio Ball. Predominance of Movement Speed Over Direction in Neuronal Population Signals of Motor Cortex: Intracranial EEG Data and A Simple Explanatory Model. Cerebral Cortex (New York, NY), 26(6):2863–2881, June 2016. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869816/ (visited on 2017-01-11), doi:10.1093/cercor/bhw033.
- HSB18
Kay Gregor Hartmann, Robin Tibor Schirrmeister, and Tonio Ball. Hierarchical internal representation of spectral features in deep convolutional networks trained for eeg decoding. In 2018 6th International Conference on Brain-Computer Interface (BCI), 1–6. IEEE, 2018.
- HMG+14
Stefan Haufe, Frank Meinecke, Kai Görgen, Sven Dähne, John-Dylan Haynes, Benjamin Blankertz, and Felix Bießmann. On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage, 87:96–110, February 2014. URL: http://www.sciencedirect.com/science/article/pii/S1053811913010914 (visited on 2015-08-07), doi:10.1016/j.neuroimage.2013.10.067.
- HZRS15
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition. arXiv:1512.03385 [cs], December 2015. arXiv: 1512.03385. URL: http://arxiv.org/abs/1512.03385 (visited on 2016-05-11).
- HSF+18
Felix A Heilmeyer, Robin T Schirrmeister, Lukas DJ Fiederer, Martin Volker, Joos Behncke, and Tonio Ball. A large-scale evaluation framework for eeg deep learning architectures. In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 1039–1045. IEEE, 2018.
- HCS+19
Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: improving flow-based generative models with variational dequantization and architecture design. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, 2722–2730. PMLR, 2019. URL: http://proceedings.mlr.press/v97/ho19a.html.
- HMEH22
Noah Hollmann, Samuel MĂĽller, Katharina Eggensperger, and Frank Hutter. Tabpfn: a transformer that solves small tabular classification problems in a second. 2022. URL: https://arxiv.org/abs/2207.01848, doi:10.48550/ARXIV.2207.01848.
- HSW+22
Delesley Stuart Hutchins, Imanol Schlag, Yuhuai Wu, Ethan S Dyer, and Behnam Neyshabur. Block-recurrent transformers. In NeurIPS. 2022. URL: https://arxiv.org/abs/2203.07852.
- HHLB11
F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential Model-Based Optimization for General Algorithm Configuration. In Proceedings of the conference on Learning and Intelligent OptimizatioN (LION 5), 507–523. January 2011.
- IKFW20
Pavel Izmailov, Polina Kirichenko, Marc Finzi, and Andrew Gordon Wilson. Semi-supervised learning with normalizing flows. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, 4615–4630. PMLR, 2020. URL: http://proceedings.mlr.press/v119/izmailov20a.html.
- KSA+17
Pieter-Jan Kindermans, Kristof T. Schütt, Maximilian Alber, Klaus-Robert Müller, and Sven Dähne. PatternNet and PatternLRP - Improving the interpretability of neural networks. CoRR, 2017. URL: http://arxiv.org/abs/1705.05598.
- KB14
Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR). 2014. URL: http://arxiv.org/abs/1412.6980 (visited on 2017-01-09).
- KD18
Diederik P. Kingma and Prafulla Dhariwal. Glow: generative flow with invertible 1x1 convolutions. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, 10236–10245. 2018. URL: https://proceedings.neurips.cc/paper/2018/hash/d139db6a236200b21cc7f752979132d0-Abstract.html.
- KLZ90
Zoltan J. Koles, Michael S. Lazar, and Steven Z. Zhou. Spatial patterns underlying population differences in the background EEG. Brain Topography, 2(4):275–284, June 1990. URL: http://link.springer.com/article/10.1007/BF01129656 (visited on 2017-01-09), doi:10.1007/BF01129656.
- LSW+16
Vernon J. Lawhern, Amelia J. Solon, Nicholas R. Waytowich, Stephen M. Gordon, Chou P. Hung, and Brent J. Lance. EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces. arXiv:1611.08024 [cs, q-bio, stat], November 2016. arXiv: 1611.08024. URL: http://arxiv.org/abs/1611.08024 (visited on 2016-12-20).
- LBH15
Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444, May 2015. URL: http://www.nature.com/nature/journal/v521/n7553/full/nature14539.html (visited on 2016-05-11), doi:10.1038/nature14539.
- LBMP+08
R Leeb, C Brunner, GR Müller-Putz, A Schlögl, and G Pfurtscheller. BCI Competition 2008–Graz data set B. Graz University of Technology, Austria, 2008.
- LW15
X. Li and X. Wu. Constructing long short-term memory based deep recurrent neural networks for large vocabulary speech recognition. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4520–4524. April 2015. doi:10.1109/ICASSP.2015.7178826.
- LLZW16
J. Liang, R. Lu, C. Zhang, and F. Wang. Predicting Seizures from Electroencephalography Recordings: A Knowledge Transfer Strategy. In 2016 IEEE International Conference on Healthcare Informatics (ICHI), 184–191. October 2016. doi:10.1109/ICHI.2016.27.
- LdD17
S. Lopez de Diego. Automated interpretation of abnormal adult electroencephalography. Master's thesis, Temple University, 2017.
- LH17
Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL: https://openreview.net/forum?id=Skq89Scxx.
- LH19
Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL: https://openreview.net/forum?id=Bkg6RiCqY7.
- MDA15
Dougal Maclaurin, David Duvenaud, and Ryan P. Adams. Gradient-based hyperparameter optimization through reversible learning. In Francis R. Bach and David M. Blei, editors, Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop and Conference Proceedings, 2113–2122. JMLR.org, 2015. URL: http://proceedings.mlr.press/v37/maclaurin15.html.
- MG15
Ran Manor and Amir B. Geva. Convolutional Neural Network for Multi-Category Rapid Serial Visual Presentation BCI. Frontiers in Computational Neuroscience, 9:146, 2015. doi:10.3389/fncom.2015.00146.
- MMG16
Ran Manor, Liran Mishali, and Amir B. Geva. Multimodal Neural Network for Rapid Serial Visual Presentation Brain Computer Interface. Frontiers in Computational Neuroscience, December 2016. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5168930/ (visited on 2017-02-03), doi:10.3389/fncom.2016.00130.
- MKF+16
H. Mendoza, A. Klein, M. Feurer, J. Springenberg, and F. Hutter. Towards Automatically-Tuned Neural Networks. In ICML 2016 AutoML Workshop. June 2016.
- MLM+17
Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan Fink, Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, and Babak Hodjat. Evolving Deep Neural Networks. arXiv:1703.00548 [cs], March 2017. arXiv: 1703.00548. URL: http://arxiv.org/abs/1703.00548 (visited on 2017-08-26).
- MLH+22
Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettlemoyer. Rethinking the role of demonstrations: what makes in-context learning work? In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, 11048–11064. Association for Computational Linguistics, 2022. URL: https://aclanthology.org/2022.emnlp-main.759.
- MO14
Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014.
- MSM17
Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for Interpreting and Understanding Deep Neural Networks. CoRR, 2017. URL: http://arxiv.org/abs/1706.07979.
- MullerHPinedaArango+22
Samuel MĂĽller, Noah Hollmann, Sebastian Pineda-Arango, Josif Grabocka, and Frank Hutter. Transformers can do bayesian inference. In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL: https://openreview.net/forum?id=KSugKcbNf9.
- NTF09
Fabian Nasse, Christian Thurau, and Gernot A. Fink. Face detection using gpu-based convolutional neural networks. In International Conference on Computer Analysis of Images and Patterns, 83–90. Springer, 2009. URL: http://link.springer.com/chapter/10.1007/978-3-642-03767-2_10 (visited on 2017-01-09).
- OP16
Iyad Obeid and Joseph Picone. The temple university hospital eeg data corpus. Frontiers in Neuroscience, 2016. URL: https://www.frontiersin.org/articles/10.3389/fnins.2016.00196, doi:10.3389/fnins.2016.00196.
- PSM16
A. Page, C. Shea, and T. Mohsenin. Wearable seizure detection using convolutional neural networks with transfer learning. In 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 1086–1089. May 2016. doi:10.1109/ISCAS.2016.7527433.
- Pfu81
G Pfurtscheller. Central beta rhythm during sensorimotor activities in man. Electroencephalography and Clinical Neurophysiology, 51(3):253–264, March 1981. URL: http://www.sciencedirect.com/science/article/pii/0013469481901395 (visited on 2017-01-09), doi:10.1016/0013-4694(81)90139-5.
- PA79
G Pfurtscheller and A Aranibar. Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalography and Clinical Neurophysiology, 46(2):138–146, February 1979. URL: http://www.sciencedirect.com/science/article/pii/0013469479900634 (visited on 2017-01-09), doi:10.1016/0013-4694(79)90063-4.
- PMN+23
Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: towards larger convolutional language models. CoRR, 2023. URL: https://doi.org/10.48550/arXiv.2302.10866, arXiv:2302.10866, doi:10.48550/arXiv.2302.10866.
- QRH+12
F. Quandt, C. Reichert, H. Hinrichs, H. J. Heinze, R. T. Knight, and J. W. Rieger. Single trial discrimination of individual finger movements on one hand: A combined MEG and EEG study. NeuroImage, 59(4):3316–3324, February 2012. URL: http://www.sciencedirect.com/science/article/pii/S1053811911013358 (visited on 2017-01-17), doi:10.1016/j.neuroimage.2011.11.053.
- RS20
Maithra Raghu and Eric Schmidt. A survey of deep learning for scientific discovery. arXiv preprint arXiv:2003.11755, 2020.
- RMGP00
H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Transactions on Rehabilitation Engineering, 8(4):441–446, December 2000. doi:10.1109/86.895946.
- Rau15
V. Rau. Eeg correlates of inner speech. Bachelor's Thesis, University of Freiburg, DOI, 2015.
- RAA+20
Anirudh Ravula, Chris Alberti, Joshua Ainslie, Li Yang, Philip Minh Pham, Qifan Wang, Santiago Ontanon, Sumit Kumar Sanghai, Vaclav Cvicek, and Zach Fisher. Etc: encoding long and structured inputs in transformers. In 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020). 2020. URL: https://www.aclweb.org/anthology/2020.emnlp-main.19.pdf.
- RMS+17
Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc Le, and Alex Kurakin. Large-Scale Evolution of Image Classifiers. arXiv:1703.01041 [cs], March 2017. arXiv: 1703.01041. URL: http://arxiv.org/abs/1703.01041 (visited on 2017-08-26).
- RM15
Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Francis R. Bach and David M. Blei, editors, Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop and Conference Proceedings, 1530–1538. JMLR.org, 2015. URL: http://proceedings.mlr.press/v37/rezende15.html.
- RSVG21
Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse attention with routing transformers. Trans. Assoc. Comput. Linguistics, 9:53–68, 2021. URL: https://doi.org/10.1162/tacl\_a\_00353, doi:10.1162/tacl\_a\_00353.
- SVSS15
T. N. Sainath, O. Vinyals, A. Senior, and H. Sak. Convolutional, Long Short-Term Memory, fully connected Deep Neural Networks. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4580–4584. April 2015. doi:10.1109/ICASSP.2015.7178838.
- SSRB15
Haşim Sak, Andrew Senior, Kanishka Rao, and Françoise Beaufays. Fast and Accurate Recurrent Neural Network Acoustic Models for Speech Recognition. In arXiv:1507.06947 [cs, stat]. July 2015. arXiv: 1507.06947. URL: http://arxiv.org/abs/1507.06947 (visited on 2016-12-21).
- SGY15
S. Sakhavi, C. Guan, and S. Yan. Parallel convolutional-linear neural network for motor imagery classification. In Signal Processing Conference (EUSIPCO), 2015 23rd European, 2736–2740. August 2015. doi:10.1109/EUSIPCO.2015.7362882.
- SMH+04
G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw. BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Transactions on Biomedical Engineering, 51(6):1034–1043, June 2004. doi:10.1109/TBME.2004.827072.
- SGE+17
R. Schirrmeister, L. Gemein, K. Eggensperger, F. Hutter, and T. Ball. Deep learning with convolutional neural networks for decoding and visualization of eeg pathology. In 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), volume, 1–7. 2017. doi:10.1109/SPMB.2017.8257015.
- Sch15a
Robin Tibor Schirrmeister. Convolutional neural networks for movement decoding from eeg signals. Master's thesis, Albert-Ludwigs-Universität Freiburg, 2015.
- SSF+17
Robin Tibor Schirrmeister, Jost Tobias Springenberg, Lukas Dominique Josef Fiederer, Martin Glasstetter, Katharina Eggensperger, Michael Tangermann, Frank Hutter, Wolfram Burgard, and Tonio Ball. Deep learning with convolutional neural networks for eeg decoding and visualization. Human Brain Mapping, aug 2017. URL: http://dx.doi.org/10.1002/hbm.23730, doi:10.1002/hbm.23730.
- Sch15b
Juergen Schmidhuber. Deep Learning in Neural Networks: An Overview. Neural Networks, 61:85–117, January 2015. arXiv: 1404.7828. URL: http://arxiv.org/abs/1404.7828 (visited on 2015-08-12), doi:10.1016/j.neunet.2014.09.003.
- SEZ+13
Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and Yann LeCun. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. arXiv:1312.6229 [cs], December 2013. arXiv: 1312.6229. URL: http://arxiv.org/abs/1312.6229 (visited on 2016-08-12).
- SLK+16
Jared Shamwell, Hyungtae Lee, Heesung Kwon, Amar R. Marathe, Vernon Lawhern, and William Nothwang. Single-trial EEG RSVP classification using convolutional neural networks. In Thomas George, Achyut K. Dutta, and M. Saif Islam, editors, SPIE Defense+ Security, volume 9836. International Society for Optics and Photonics, May 2016. URL: http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2224172 (visited on 2017-02-14), doi:10.1117/12.2224172.
- SLD16
E. Shelhamer, J. Long, and T. Darrell. Fully Convolutional Networks for Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, PP(99):1–1, 2016. doi:10.1109/TPAMI.2016.2572683.
- Spr15
Jost Tobias Springenberg. Unsupervised and semi-supervised learning with categorical generative adversarial networks. arXiv preprint arXiv:1511.06390, 2015.
- Sto16
Sebastian Stober. Learning Discriminative Features from Electroencephalography Recordings by Encoding Similarity Constraints. In Bernstein Conference 2016. 2016. doi:10.12751/nncn.bc2016.0223.
- SCG14
Sebastian Stober, Daniel J. Cameron, and Jessica A. Grahn. Using Convolutional Neural Networks to Recognize Rhythm Stimuli from Electroencephalography Recordings. In Proceedings of the 27th International Conference on Neural Information Processing Systems, NIPS'14, 1449–1457. Cambridge, MA, USA, 2014. MIT Press. URL: http://dl.acm.org/citation.cfm?id=2968826.2968988 (visited on 2016-12-20).
- SLL20
Pascal Sturmfels, Scott Lundberg, and Su-In Lee. Visualizing the impact of feature attribution baselines. Distill, 2020. https://distill.pub/2020/attribution-baselines. doi:10.23915/distill.00022.
- SQC+16
Xuyun Sun, Cunle Qian, Zhongqin Chen, Zhaohui Wu, Benyan Luo, and Gang Pan. Remembered or Forgotten?—An EEG-Based Computational Prediction Approach. PLOS ONE, 11(12):e0167497, December 2016. URL: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167497 (visited on 2017-02-14), doi:10.1371/journal.pone.0167497.
- SZS+14
Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In International Conference on Learning Representations. 2014. URL: http://arxiv.org/abs/1312.6199.
- TH17
Yousef Rezaei Tabar and Ugur Halici. A novel deep learning approach for classification of EEG motor imagery signals. Journal of Neural Engineering, 14(1):016003, 2017. URL: http://stacks.iop.org/1741-2552/14/i=1/a=016003 (visited on 2017-02-14), doi:10.1088/1741-2560/14/1/016003.
- TMA+12
Michael Tangermann, Klaus-Robert Müller, Ad Aertsen, Niels Birbaumer, Christoph Braun, Clemens Brunner, Robert Leeb, Carsten Mehring, Kai J. Miller, Gernot R. Müller-Putz, Guido Nolte, Gert Pfurtscheller, Hubert Preissl, Gerwin Schalk, Alois Schlögl, Carmen Vidaurre, Stephan Waldert, and Benjamin Blankertz. Review of the BCI Competition IV. Frontiers in Neuroscience, July 2012. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3396284/ (visited on 2015-08-20), doi:10.3389/fnins.2012.00055.
- TvdOB16
Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative models. In Yoshua Bengio and Yann LeCun, editors, 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. 2016. URL: http://arxiv.org/abs/1511.01844.
- TPL16
Pierre Thodoroff, Joelle Pineau, and Andrew Lim. Learning Robust Features using Deep Learning for Automatic Seizure Detection. In JMLR Workshop and Conference Proceedings, volume 56. 2016. URL: http://www.jmlr.org/proceedings/papers/v56/Thodoroff16.pdf (visited on 2017-02-14).
- VSP+17
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, 5998–6008. 2017. URL: https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.
- VHS+18
Martin Volker, Jiri Hammer, Robin T Schirrmeister, Joos Behncke, Lukas DJ Fiederer, Andreas Schulze-Bonhage, Petr Marusic, Wolfram Burgard, and Tonio Ball. Intracranial error detection via deep learning. In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 568–575. IEEE, 2018.
- VolkerSF+18
Martin Völker, Robin T Schirrmeister, Lukas DJ Fiederer, Wolfram Burgard, and Tonio Ball. Deep transfer learning for error decoding from non-invasive eeg. In 2018 6th International Conference on Brain-Computer Interface (BCI), 1–6. IEEE, 2018.
- WZTE18
Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros. Dataset distillation. CoRR, 2018. URL: http://arxiv.org/abs/1811.10959, arXiv:1811.10959.
- WGS+18
X. Wang, C. A. Gkogkidis, R. T. Schirrmeister, F. A. Heilmeyer, M. Gierthmuehlen, F. Kohler, M. Schuettler, T. Stieglitz, and T. Ball. Deep learning for micro-electrocorticographic (µecog) data. In 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), volume, 63–68. 2018. doi:10.1109/IECBES.2018.8626607.
- WLSJ13
Zuoguan Wang, Siwei Lyu, Gerwin Schalk, and Qiang Ji. Deep Feature Learning Using Target Priors with Applications in ECoG Signal Decoding for BCI. In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI '13, 1785–1791. Beijing, China, 2013. AAAI Press. URL: http://dl.acm.org/citation.cfm?id=2540128.2540384 (visited on 2017-01-16).
- XRLM22
Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context learning as implicit bayesian inference. In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL: https://openreview.net/forum?id=RdJVFCHjUMI.
- ZGD+20
missing booktitle in bigbird
- ZB21
Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, 12674–12685. PMLR, 2021. URL: http://proceedings.mlr.press/v139/zhao21a.html.
- ZMB21
Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL: https://openreview.net/forum?id=mSAKhLYLSsl.
- ZL16
Barret Zoph and Quoc V. Le. Neural Architecture Search with Reinforcement Learning. arXiv:1611.01578 [cs], November 2016. arXiv: 1611.01578. URL: http://arxiv.org/abs/1611.01578 (visited on 2017-08-26).
- ZVSL17
Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning Transferable Architectures for Scalable Image Recognition. arXiv:1707.07012 [cs], July 2017. arXiv: 1707.07012. URL: http://arxiv.org/abs/1707.07012 (visited on 2017-08-26).